Yiwei Dai, Mingchen Sun, Xin Wang*. Pre-Training Graph Neural Networks via Weighted Meta Learning. IJCNN, 2024. (CCF-C类,通讯作者)
Xin Juan, Kaixiong Zhou, Ninghao Liu, Tianlong Chen, Xin Wang*. Molecular Data Programming: Towards Molecule Pseudo-labeling with Systematic Weak Supervision. CVPR, 2024. (CCF-A类,通讯作者)
Yili Wang, Kaixiong Zhou, Ninghao Liu, Ying Wang, Xin Wang*. Efficient Sharpness-Aware Minimization for Molecular Graph Transformer Models. ICLR, 2024. (清华A类,通讯作者)
Zihao Chen, Ying Wang, Fuyuan Ma, Hao Yuanhao, Xin Wang. GPL-GNN: Graph Prompt Learning for Graph Neural Network. Knowledge-based Systems, 2024. (中科院一区)
Mingchen Sun, Mengduo Yang, Yingji Li, Dongmei Mu, Xin Wang, Ying Wang. Structural-aware Motif-based Prompt Tuning for Graph Clustering. Information Sciences, 2023. (中科院一区)
Ying Wang, Yingji Li, Yue Wu, Xin Wang*. Exploring Multiple Hypergraphs for Heterogeneous Graph Neural Networks. Expert Systems with Applications, 2023. (中科院一区,通讯作者)
Xianglin Zuo, Wenqi Chen, Xianduo Song, Xin Wang, Ying Wang. Generating Real-world Hypergraphs via Deep Generative Models. Information Sciences, 2023. (中科院1区,CCF-B类)
Hengrui Gu, Xin Wang*. LAGCL: Towards Stable and Automated Graph Contrastive Learning. ADMA, 2023. (CCF-C类,通讯作者)
Yingji Li, Mengnan Du, Xin Wang*, Ying Wang*. Prompt Tuning Pushes Farther, Contrastive Learning Pulls Closer: A Two-Stage Approach to Mitigate Social Biases. ACL Main Conference, 2023. (CCF-A类,通讯作者)
Xin Juan, Fengfeng Zhou, Wentao Wang, Wei Jin, Jiliang Tang, Xin Wang*. INS-GNN: Improving graph imbalance learning with self-supervision. Information Sciences, 2023. (中科院1区, CCF-B类, 通讯作者)
Yili Wang, Kaixiong Zhou, Rui Miao, Ninghao Liu, Xin Wang*. AdaGCL: Adaptive Subgraph Contrastive Learning to Generalize Large-scale Graph Training. In Proceedings of the 31st ACM International Conference on Information and Knowledge Management (CIKM), 2022. (CCF-B类,通讯作者)
Rui Miao, YintaoYang, Yao Ma, Xin Juan, Haotian Xue, Jiliang Tang, YingWang, Xin Wang*. Negative Samples Selecting Strategy for Graph Contrastive Learning. Information Sciences, 2022. (中科院1区, CCF-B类, 通讯作者)
Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, Xin Wang. GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2022. (CCF-A类)
Kai Guo, Kaixiong Zhou, Xia Hu, Yi Chang, Xin Wang*. Orthogonal Graph Neural Networks. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI), 2022. (CCF-A类, 通讯作者)
Yintao Yang, Rui Miao, Yili Wang, Xin Wang*. Contrastive Graph Convolutional Networks with Adaptive Augmentation for Text Classification. Information Processing and Management, 59(4): 102946, 2022. (中科院1区, CCF-B类, 通讯作者)
Song Xianduoa#, Wang Xin#, Song Yuyuana, Zuo Xianglin, Wang Ying*. Hierarchical Recurrent Neural Networks for Graph Generation. Information Sciences, 589: 250-264, 2022. (中科院1区, CCF- B类, 共同一作)
Xin Juan, Meixin Peng, Xin Wang*. Exploring Self-training for Imbalanced Node Classification. International Conference on Neural Information Processing (ICONIP), 2021: 28-36. (CCF-C类, 通讯作者)
Ying Wang, Hongji Wang, Xinrui Huan, Xin Wang∗. Exploring Graph Capsual Network for Graph Classification. Information Sciences, 581: 932-950, 2021. (中科院1区, CCF-B类, 通讯作者)
Siyuan Guo, Ying Wang, Hao Yuan, Zeyu Huang, Jianwei Chen, Xin Wang*. TAERT: Triple-Attentional Explainable Recommendation with Temporal Convolutional Network. Information Sciences, 567: 185-200, 2021. (中科院1区, CCF-B类, 通讯作者)
Xin Wang, Ying Wang. Attention guide Walk Model in Heterogeneous Information Network for Multi-style Recommendation Explanation. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI), 2020: 6275-6282. (CCF A类, 第一作者)
Xiaoyang Wang, Yao Ma, Wei Jin, Xin Wang, Jiliang Tan, Jian Yu. Traffic Speed Prediction Based on Spatial Temporal Graph Neural Network. In Proceedings of the World Wide Web Conference (WWW), 2020: 1082-1092. (CCF A类)
Xin Wang, Ying Wang, Wanli Zuo, Yongguo, Cai. Exploring social context for topic identification in short and noisy text. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI), 2015, 1868-1874. (CCF A类, 第一作者)
Ying Wang, Xin Wang, Jiliang Tang, WanliZuo. Modeling status theory in trust prediction. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI), 2015, 1875-1881. (CCF A类)
Ying Wang, Xin Wang*, WanliZuo. Research on trust prediction from a sociological perspective. Journal of Computer Science and Technology (JCST), 2015, 30(4): 843-858. (CCF B类, 通讯作者)
Xin Wang, Ying Wang, Jianhua, Guo. Building trust networks in the absence of trust relations. Frontiers of Information Technology & Electronic Engineering (FITEE), 2017, 18 (10): 1591-1600. (JCR 2区, 第一作者)
Yunzhi Ling, Ying Wang, Xin Wang, Yunhao Ling. Exploring Common and Label-Specific Features for Multi-Label Learning with Local Label Correlations. IEEE Access, 2020. (中科院2区)
Xin Wang, Ying Wang, Hongbin Sun. Exploring the combination of dempster- shafer theory and neural network for predicting trust and distrust. Computational Intelligence and Neuroscience, 2016, 5403105: 1-12. (JCR1区, 第一作者)
Xin Wang, Wanli Zuo, Ying Wang. A novel approach to word sense disambiguation based on topical and semantic association. The Scientific World Journal, 2013, 586327: 1-8. (JCR3区, 第一作者)
王鑫, 王英, 左万利. 基于交互意见和地位理论的符号网络链接预测模型研究. 计算机研究与发展, 2016(4): 764-775. (CCF A类中文, 第一作者)
吴越, 王英, 王鑫, 徐正祥, 李丽娜. 基于超图卷积的异质网络半监督节点分类. 计算机学报, 2021, 44 (11): 2248-2260. (CCF A类中文)
王英, 王鑫, 左万利. 基于社会学理论的信任关系预测模型研究. 软件学报, 2014, 25(12): 2893-2904. (CCF A类中文)
孙小婉, 王英, 王鑫, 孙玉东. 面向双注意力网络的特定方面情感分析模型. 计算机研究与发展, 2019, 56(11): 2384-2395. (CCF A类中文)
王英, 左祥麟, 左万利, 王鑫. 基于本体的Deep Web查询接口集成. 计算机研究与发展, 2012, 49(11): 2383-2394. (CCF A类中文)